Factors Affecting Ex-Situ Aqueous Mineral Carbonation Using Calcium and Magnesium Silicate Minerals
نویسندگان
چکیده
Carbonation of magnesiumand calcium-silicate minerals to form their respective carbonates is one method to sequester carbon dioxide. Process development studies have identified reactor design as a key component affecting both the capital and operating costs of ex-situ mineral sequestration. Results from mineral carbonation studies conducted in a batch autoclave were utilized to design and construct a unique continuous pipe reactor with 100% recycle (flow-loop reactor). Results from the flow-loop reactor are consistent with batch autoclave tests, and are being used to derive engineering data necessary to design a bench-scale continuous pipeline reactor.
منابع مشابه
Commentary: Ex Situ Aqueous Mineral Carbonation
CO2 conversion to calcium and magnesium carbonates has garnered considerable attention since it is a thermodynamically downhill pathway to safely and permanently sequester large quantities of CO2. This seminal work performed at The National Energy Technology Laboratory in Albany (NETL-Albany) reports the conversion of calcium-and magnesium-bearing silicate minerals, such as olivine [(Mg, Fe)2Si...
متن کاملSerpentine and single stage mineral carbonation for the storage of carbon dioxide
Mineral carbonation is the formation of stable calcium, magnesium, and iron carbonates from the reaction between the metals in common minerals and carbon dioxide. The benign and long-term nature of this CO2 sequestration option has led to ongoing research efforts. Magnesium silicates such as olivine and serpentine have been the focus of mineral carbonation research for the sequestration of CO2 ...
متن کاملRates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage
Near-surface reaction of CO2-bearing fluids with silicate minerals in peridotite and basalt forms solid carbonate minerals. Such processes form abundant veins and travertinedeposits, particularly in associationwith tectonically exposed mantle peridotite. This is important in the global carbon cycle, in weathering, and in understanding physical-chemical interaction during retrograde metamorphism...
متن کاملEnhancing Process Kinetics for Mineral Carbon Sequestration
The current low-cost process for mineral carbonation involves the direct carbonation of a slurry of magnesium or calcium silicate mineral with supercritical CO2. The process is currently limited by the slow reaction kinetics of the carbonation reactions, and in particular the slow dissolution rates of the silicates in weakly acidic conditions. Enhancing the dissolution rate in weakly acidic con...
متن کاملMicrobial electrolysis desalination and chemical-production cell for CO2 sequestration.
Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitat...
متن کامل